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Abstract. Infinite polyacenacene has been studied by the same method as applied by Salem 
and Longuet-Higgins to infinite polyacetylene and polyacene. Polyacenacene can be con- 
sidered as three polyacetylene chains joined by cross links. It is predicted that the most stable 
configuration is the equilibrium configuration exhibiting glide plane symmetry, in which the 
C-C bonds of three chains all have the same length, being slightly shorter than the cross 
bonds. This stable configuration of equilibrium has zero gap and zero slope at the Fermi 
level. 

1. Introduction 

In 1964, Little [l] proposed that there may exist certain organic polymers which can 
become superconducting at or above room temperature. This conjecture attracted great 
interest initially because of its importance. Little’s model consists of a long molecule 
(spine) with side groups playing the role of polarizers. In his original proposal, poly- 
acetylene was used as the spine of a one-dimensional superconductor. In spite of many 
efforts, however, such a favourable material has not been synthesized yet, and the 
realization of this idea encountered a series of objections 121. One of them concerns the 
instability of a one-dimensional metal (Peierls [3] distortion). It is well known that for 
polyacetylene the regular chain is unstable with respect to Peierls distortion, leading to 
bond-length alternation and an opening non-zero energy gap [4]. On the other hand, 
the structural essence of graphite has an equivalent C-C bond with a zero band gap. 
Therefore it is without doubt of interest to investigate the structures and properties of a 
series of systems from long polyacenic molecules to a graphite layer. 

One of the simplest members of such a series is polyacene, which can be considered 
as two polyacetylene chains joined by cross links. This polymer has not been synthesized 
yet. However, theoretical studies of its electronic structure have been made by a number 
of workers [5-91. Some of these have pointed out that, in polyacene, Peierls distortion 
scarcely happens. The next member of such a series is polyacenacene, which can be 
considered as three polyacetylene chains joined by cross links. Only a few researchers 
have studied this polymer [lo]. Although complete synthesis of this polymer has not yet 
been achieved, a highly conductive organic material, which seems to be found with 
condensed aromatic rings, has been prepared recently [ l l ] .  Since the atomic C-to-H 
ratio for this material is 3, we can consider polyacenacene as a model for this polymer. 
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In this paper we wish to study the bond alternation and band structure in infinite 
polyacenacene by the same method as that applied to infinite polyacetylene and poly- 
acene [4,5]. We use the simple molecular orbital theory neglecting atomicorbital overlap 
and including a-bond compression. Here, using the relationship already assumed in 
[4,5] between the length of a bond, its resonance integral and its mobile order in 
equilibrium, we show that in infinite polyacenacene no Peierls distortion is expected, 
and the most stable configuration is one in which all the C-C bonds of three chains are 
of length 1.413 A and the cross bonds of length 1.433 A. In section 2 we determine the 
expression for the energy of the n electrons in infinite polyacenacene. The equilibrium 
configuration and its stability are investigated in section 3. The n band structure of the 
stable configuration is given in section 4. 

2. Expression for the binding energy 

We would like to limit the brief description of the simple molecular orbital method, 
similar to that in [4,5],  to a minimum necessary for the calculation. The total energy can 
be expressed as the sum ~f z ;;;it E,  due to the a electrons and a part E, due to the n 
electrons: 

E = E ,  + E ,  E ,  = Ef(rl) (1) 
I 

To calculate E,, we consider a probable geometry, in which the bonds of three chains 
are alternately of length rl and r2 ( r l  2 r 2 ) ,  and the cross bonds are all of length r3 (figure 
1). The corresponding resonance integrals are pl. p 2  and p3, respectively (/3, s PI < 0, 
p3 < 0). The periodic forms are dictated by the translational symmetry. The boundary 
conditions [12] imply that the phase angle e, must be a multiple of 2n/N: 

where N is the number of unit cells. For infinite polyacenacene, N-+ =. e, becomes a 
continuous variable in the interval. el 8 and 0 S 0 S 2n. The secular equation for the 
orbital energy E in this configuration leads to the following form: 

8, = 2xj/N (2) 

- (3161' + 2p3)~4  + (3161' + 2/6l2p;  + /.?!)E* - /ai6 = 0 (3) 
where 

1612 = p: + p: + 2p1p2 cos e. (4) 
It is a cubic equation in E , .  The solutions are given, in order, by 

~1 = - [ i q  CoS(@/3) + (3161' + 2/3:)/3]'" 

~2 = - {jq  COS[(^ - 2 ~ ) / 3 ]  + (3161' + 2/3:)/3}1/2 

~3 = - {jq COS[(@ + 2n)/3] + (3161' + 2/3;)/3}'" 

E 4  = - E3 E 5  = - E 2  E g  = - E ,  

where 
q = (6i6i2p$ + /3 : ) '12  

and (Y is related to the resonance integrals by 

COS a = [(91612 - 2/3$)p{]/2q3. (7) 
Generally, the orbitals fall into six bands. In the ground state the lowest three bands 
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Figure 1. A probable configuration of 
polyacenacene. 

0 

Figure 2. n-band structure of the stable con- 
figuration. 

Momentum 

are full, each orbital containing two electrons, and the other three bands are empty. The 
total energy of all the JC electrons is therefore 

For infinite polyacenacene we can replace the sum by an integral, namely 

3. ‘Symmetrical’ equilibrium configuration and its stability 

We now consider an arbitrary ‘symmetrical’ configuration with r1 = r2 (strictly speaking, 
the symmetry is glide plane symmetry). We want to calculate the equilibrium bond 
length and to know whether the symmetrical equilibrium configuration is stable or 
unstable as the bonds of three chains are alternately increased and decreased slightly in 
length. 
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To determine the values of r1  and r 3 ,  which give a symmetrical configuration of static 
equilibrium, we need an expression for the mobile ordersp, andp, of the bonds in terms 
of P1 and P3.  By definition, it is easy to see that 

for polyacenacene. From equation (9) we find that 

2n (2 + 2[1 + 6 ~ * ( i  + COS e)] COS[@ + h ~ i ) / 3 ] / ~  + uf3(i)} 
d e  

S( i )  

where 
U = 1 + 1 2 ~ * ( 1  + COS e) A = Pl IP3  

={9A(l+cos 8)[1-2A2(1+cos 6)]sin[(cu+2ni)/3]}/W 
a cos[(@ + 2xi)/3] 

aP3 
f 3 ( i )  = P 3  

s(i) = { 6 P ( i  + COS e) + 2 + 2u COS[(CU + 2~i)/3])l’* 
= -{18A2(1+cos~)[1-2A2(1+cos8)]s in[(~+ 2?ri)/3]/W 

(i = 0 ,  21) 

and 

w= [ 1 + 1 2 ~ * ( 1 + ~ 0 ~  e ) ] { [ i + 1 2 ~ * ( 1 + ~ 0 ~ e ) ] ~ - [ i - 9 ~ ~ ( i + ~ 0 ~  e)]*}l’*. (12) 
It can be proved that the integrals in equation (11) are convergent. 

mobile order by the approximate formula 

established empirically for C(sp‘)-C(sp2) bonds, and the dependence of the resonance 
integral of a bond on its length is assumed to take the exponential form 

where the exponent a has the value 0.3106 A. Thus using equations (13) and (14) we get 

On the other hand, from equation (11) 

Following [4,5], the length of a bond in equilibrium is assumed to be related to its 

r ,  (A) = 1.50 - 0 . 1 5 ~ ~  

P I  = - B exp(-r,/a) 

p1 - p 3  = (0.3106/0.15) In A .  

(13) 

(14) 

(15) 

Plottingpl - p 3  against A = P1/P3 in accordance with equations (15) and (16), we obtain 
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two curves. The intersection occurs at A = 1.066. The corresponding mobile bond order 
calculated from equation (1 1) are 

pi =p2 = 0.5789 p3 = 0.4446. (17) 

r l  = r2 = 1.4132 A r3 = 1.4333w. (18) 

Substitution of these values into equation (13) gives the equilibrium bond lengths as 

We are now in a position to investigate the stability of the symmetrical equilibrium 
configuration just found when the bond lengths of three chains are alternatively increased 
and decreased slightly. Suppose that a distortion can be represented by keeping P3 = 
- B exp(-r3/u) constant and writing 

PI = Po exp(-x) P 2  = P o  exp(x) (19) 
where 

Po = - B exp(-r,/a) = - B exp(-r,/a) 

Ar = 2 ax. 

r l ,  r2 and r3 have the values given by equation (18). Ar is the change in bond length in 
three chains. For any configuration of static equilibrium the condition 

(dE/ax)o = (aE,/ax)o + (aE,Jax)o = 0 

df/dr + 2p dP/dr  = 0. 

(21) 

(22) 

must hold, namely [4] 

From equations (13) and (14) it follows that 

df/dr = (2P/a)(1.50 - r)/O.l5. 

To study the stability of the symmetrical equilibrium configuration, we need the second 
derivative of E with respect to x :  

(a2E/ax2)o = (a*E,/ax2)o + (a2En/aX2)". (24) 

With the aid of equations (1) and (23), ( c ~ ~ E , / ~ x ~ ) ~  can be expressed as 

( d 2 E , / ~ ~ 2 ) o  = 6 N ~ ~ ( d ~ f / d r * ) , = , , = ~ ~  = -12NPo(u/0.15 + po).  (25) 

Using equations (9) and (19), we find that 

2N *' 6A2 + 12A2 cos[(a + 2ni)/3]/u + uG(i) d e  
AS(i)  (26) 

where 

G(i) = ([a{cos(a + 2ni)/3])/ax]/sinh(2x)), 

={6A[1-2A2(1+cos e)]sin[(a+2ni)/3]}/Q (i = 0, +1) (27) 
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and 
(28) 

U and S ( i )  are given by equation (12). Similarly, these integrals are all convergent. 
Therefore 

Q = u2[6( 1 + COS 0) + 39A2( 1 + COS 0)' + 192A4( 1 + COS q3] '/'. 

wherep, and A have the values already calculated: p o  = 0.5789 and A = P, /P3  = 1.066. 
It follows that 

K( i ,  A ,  0) d 0  = 1.4878. 
6fin,=, . . ,  

Thus, remembering that Po < 0, we find that 

( d * E / d X * ) "  > 0. 

It turns out that the equilibrium configuration exhibiting glide plane symmetry is one of 
stable equilibrium. 

4. m-band structure 

Figure 2 shows the n-band structure, corresponding to the equilibrium configuration 
exhibiting glide plane symmetry. One can see that all the n bands at the Brillouin zone 
boundary are doubly degenerate. In the case of polyacenacene such a double degeneracy 
always occurs because of its glide plane symmetry [13]. Additionally, the highest occu- 
pied (HO) and lowest unoccupied (LU) bands have zero slope at the Fermi level. In fact, 
from equation ( 5 )  the energy bands can be written as 

&(e) = 2 ( ~ ~ / f i ) { 6 ~ ~ ( 1  + COS e)  + 2 

+ 2[1 + 12A2(1 + cos 0)]"* cos[(& + 2n)/3]} (32) 
where + and - correspond to the HO and LU bands, respectively. It follows that 

aE(O)/aO = + ( b 3 / f i ) ( - s i n  0)(3A2 + 6A2 cos[(& + 2n)/3]u 

+ [[U d{cos[(&+ 2n)/3]/aO}]/( -sin O))/[6A2(1 + C O S  0) + 2 

+ 2u cos[(&+ 2n)/3]]'/* - 7 ( ~ A ' P 3 / s i n  0) 

X [ 4 8 A * ( 1 + ~ 0 ~ 0 ) ] [ 1 + .  . . ] / [1 - (21 /4 )A*(1+~0~0)+ .  . . ] + O  (33) 

when 8-  n (Fermi level). Here we have used the asymptotic formula 

(n- L Y ) / V / ~ - ~ A ( ~  +COS e)'!* - (69/4)~3(i  + COS e)3/2 
+ (20481/160)A5(1 +cos f3)5'2 + . . . (0+n and P l  = p 2 ) .  (34) 

In conclusion we have shown that in infinite polyacenacene the equilibrium con- 
figuration exhibiting glide plane symmetry is one of stable equilibrium, in which the C- 
C bonds of three chains all have the same length (1.413 A) and are slightly shorter than 
the cross bonds (1.433 A). This stable equilibrium configuration has zero gap and zero 
slope at the Fermi level. The conclusion that no bond alternation is expected in infinite 
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polyacenacene agrees with the work of Yamabe et a1 [lo], where the one-dimensional 
tight-binding SCFMO method is used at the level of the CND0/2 approximation. In the 
present investigation, however, the Coulomb interactions are not explicitly included. In 
a study of the Coulomb effects on polyacene, O’Connor and Watts-Tobin [14] stated: 
‘It appears that it is necessary to take careful account of the Coulomb interaction between 
the n electrons.’ From this consideration, more sophisticated approaches would be 
required for further investigation of the electronic structure of polyacenacene. Work in 
this direction is in progress. 
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